Abelian groups which admit only nilpotent multiplications
نویسندگان
چکیده
منابع مشابه
Which Finitely Generated Abelian Groups Admit Equal Growth Functions?
We show that finitely generated Abelian groups admit equal growth functions with respect to symmetric generating sets if and only if they have the same rank and the torsion parts have the same parity. In contrast, finitely generated Abelian groups admit equal growth functions with respect to monoid generating sets if and only if they have same rank. Moreover, we show that the size of the torsio...
متن کاملWhich Finitely Generated Abelian Groups Admit Isomorphic Cayley Graphs?
We show that Cayley graphs of finitely generated Abelian groups are rather rigid. As a consequence we obtain that two finitely generated Abelian groups admit isomorphic Cayley graphs if and only if they have the same rank and their torsion parts have the same cardinality. The proof uses only elementary arguments and is formulated in a geometric language.
متن کاملGroups Which Do Not Admit Ghosts
A ghost in the stable module category of a group G is a map between representations of G that is invisible to Tate cohomology. We show that the only non-trivial finite p-groups whose stable module categories have no non-trivial ghosts are the cyclic groups C2 and C3. We compare this to the situation in the derived category of a commutative ring. We also determine for which groups G the second p...
متن کامل2 00 8 Which infinite abelian torsion groups admit an almost maximally almost - periodic group topology ? *
A topological group G is said to be almost maximally almost-periodic if its von Neumann radical n(G) is non-trivial, but finite. In this paper, we prove that (a) every countably infinite abelian torsion group, (b) every abelian torsion group of cardinality greater than continuum, and (c) every (non-trivial) divisible abelian torsion group admits a (Hausdorff) almost maximally almost-periodic gr...
متن کاملWhich Infinite Abelian Groups Admit an Almost Maximally Almost-periodic Group Topology?
A topological group G is said to be almost maximally almost-periodic if its von Neumann radical n(G) is non-trivial, but finite. In this paper, we prove that every abelian group with an infinite torsion subgroup admits a (Hausdorff) almost maximally almost-periodic group topology. Some open problems are also formulated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1972
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1972.40.251